IMAGE-TO-VIDEO CONVERSION: BRIDGING STATIC VISUALS TO DYNAMIC NARRATIVES
Main Article Content
Abstract
Abstract: Image-to-video conversion is a transformative process that translates a sequence of still images into a dynamic and cohesive video format. It involves organizing, sequencing, and enhancing individual images with transitions and audio elements to create engaging visual narratives. This technology's versatility finds applications across marketing, digital content creation, education, and entertainment, offering a creative means to transform static visuals into compelling video presentations. As technology advances, automated tools and AI-driven algorithms continue to refine and streamline this conversion process, enabling efficient and captivating video creation from static imagery.
Article Details
References
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks. arXiv preprint arXiv:1406.2661.
Kingma, D. P., & Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv preprint arXiv:1312.6114.
Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. (2016). Generative Adversarial Text-to-Image Synthesis. Proceedings of The 33rd International Conference on Machine Learning.
Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., & Girshick, R. (2018). Data Distillation: Towards Omni-Supervised Learning. arXiv preprint arXiv:1712.04440.
Zhu, J. Y., Zhang, R., Pathak, D., Darrell, T., Efros, A. A., Wang, O., & Shechtman, E. (2017). Toward Multimodal Image-to-Image Translation. Advances in Neural Information Processing Systems, 30.
Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv preprint arXiv:1511.06434.
Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X., & Metaxas, D. N. (2017). StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks. Proceedings of the IEEE International Conference on Computer Vision.
Dash, S., Padhy, N., & Panda, R. (2020). A Comprehensive Survey on Text-to-Image Synthesis. Artificial Intelligence Review, 53(8), 5535-5586.